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We give a Hamiltonian discussion of surface states in an extra dimension as a basis for chiral fermions in lattice 
models. Such modes appear with the Wilson fermion action when the hopping parameter exceeds a critical value. 
The association of such states with the closing and reopening of a band gap was noted by Shockley in 1939. 

Chiral symmetry  in the lattice framework is a 
longstanding and classic problem. For a review 
see Petcher's contribution to last year's meeting 
[1]. Here we present our efforts to understand re- 
cent approaches based on fermionic states bound 
to defects in a higher dimensional space. 

As is well known, simple at tempts  to place 
fermionic fields on a lattice tend to yield species 
beyond those initially intended. One traditional 
scheme for removing these infamous "doublers" 
involves adding terms which naively vanish in the 
continuum limit but  give a large energy to the ex- 
tra states. Unfortunately, this explicitly violates 
chiral symmetry;  so, the usual approach is to tune 
the parameters to make the pion mass small and 
hope that  the predictions of current algebra will 
be recovered in the continuum limit. Given the 
historical importance of chiral symmetry  to our 
understanding of particle physics, this artificial 
prescription is not particularly satisfying. 

The last year has seen considerable activity on 
using an infinite number of regulator fields to 
solve this problem [2, 3]. One particularly ele- 
gant realization of this approach involves the use 
of Shockley surface states [4]. 

We first review the standard Wilson fermion 
approach. Working in one space dimension for 
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Figure 1. The spectrum of free Wilson fermions. 

simplicity, consider the Hamiltonian 

a = K" y ~  i ( a J a j +  1 - b~bj+l)-}- h.c .  

+ M E aJbj + h.c. (1) 

- K ,  + bJo +l)+ h.c. 

Here a and b represent fermion annihilation op- 
erators on a chain of sites labeled by the index j .  
The quantity K is the "hopping parameter." In 
momentum space the single-fermion eigenstates 
have energies E satisfying 

E 2 = 4K2 sin2(q) + (M - 2Krcos(q)) 2 (2) 

where 0 _< q < 2r .  This spectrum is sketched 
in Fig. 1. The physical vacuum has the negative 
energy states filled. The "Wilson term" propor- 
tional to r makes the "doublers" at q --, r heavier 
than the states at q -,, 0. 
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Figure 2. Energy levels versus hopping parameter 
K for Wilson fermions on a 30 site lattice. 

At the critical value 2 K r  = M the gap closes 
and one species of fermion becomes massless. 
While the symmetry  is not exact when the lat- 
tice spacing is finite, this represents a candidate 
for a chirally symmetric theory in the continuum 
limit. Beforehand, as discussed in Ref. [5], chiral 
symmetry  does not provide an order parameter.  
A further difficulty is that  gauge interactions will 
renormalize the parameters.  To obtain massless 
pions one must finely tune K to Kcrit, an apriori 
unknown function of the gauge coupling. 

The free Wilson theory has interesting proper- 
ties in the supercritical case, where K > Kcri~ = 
M / 2 r .  As K increases through the critical value, 
the gap in the spectrum first closes and then re- 
opens. If we work in a large box with open walls 
the final spectrum consists of a particle band with 
E > 0, an antiparticle band at negative energy 
which represents the filled Dirac sea, and finally 
two surface states near E = 0 bound to the box 
walls. This behavior is plotted in Fig. 2. This 
figure has a close similarity to Fig. 2 of Ref. [4]. 

A more general result is that  there will exist 
similar states bound to any interface separating 
a region with K > K¢~it from a region with K < 
Kcrit. In Ref. [2], Kaplan uses M = 2 g r + m e ( x ) .  
We adopt the simpler approach of Shamir [6] and 
take K = 0 on one side, giving modes on an open 
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Figure 3. The energy spectrum as a function of 
the physical momentum on a lattice with 46 space 
sites and 25 sites in the extra dimension. Note the 
crossing surface modes at low energy. 

surface. The energy of these states goes to zero 
as the box becomes infinite in length. 

For a theory of chiral symmetry,  we now turn 
the picture on its side and regard the above 
hopping as occurring in an extra "fifth" dimen- 
sion. We live on a four dimensional "interface" 
with physically observed particles being surface 
modes. Zero mass fermions become a natural 
consequence of the vanishing energy of the sur- 
face states. With a finite but large box, opposite 
walls give rise opposite helicity states. Anomalies 
arise quite naturally as tunnelling between the 
walls. A continuum version of this phenomenon 
was presented in Ref. [7]. 

When physical dimensions are added, two 
things happen. First, physical momentum moves 
the surface modes from E = 0. In one physi- 
cal space dimension they go to E = =ksin(qx), 
with leftmovers and right-movers living on oppo- 
site walls in the extra dimension. This is illus- 
trated in Figs. 3 and 4. 

Second, because of the Wilson term in the 
space directions, Kcrit depends on the physical 
momentum. The condition for surface modes to 
exist then depends on the spatial momentum. If 
they disappear before reaching momentum 7r, as 
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Figure 4. The energy spectrum as a function of 
the average position in the extra dimension on a 
N1 = 24 by N5 = 11 lattice. Note how the low 
energy modes lie near the ends of the lattice. 

seen in Fig. 3, doublers are eliminated. For one 
space dimension we have 

Kerit = M / 2 r  - g cos(q~) (3) 

and the doubler at q~ = lr is absorbed in contin- 
uum of the fifth dimension if 

M / 2 r -  K < g < M / 2 r  + K.  (4) 

This explains the pictures in Ref. [8]. 
Ultimately interest lies in coupling the fermions 

to gauge fields. To avoid extraneous fields from 
the extra dimension, it is simplest to have gauge 
fields in physical dimensions only. We also put the 
same field with a given physical position at all xs; 
thus, as in Ref. [3], x5 represents a "flavor" coor- 
dinate. With this prescription, the gauge field has 
equal couplings to the opposite chirality states on 
the opposing walls and effectively we have a Dirac 
fermion. With two flavors the scheme should give 
rise to massless pions with no tuning or doubling. 
Quarks can acquire a mass via an explicit cou- 
pling between the opposite walls. 

An extension of these ideas to chiral gauge 
theories remains open. Weak interactions vio- 
late parity, and we would like a non-perturbative 
formulation. In practice this is irrelevant since 

the electroweak couplings are small and pertur- 
bation theory works quite well. On the other 
hand, the lattice is the cleanest non-perturbative 
regulator known and we would like to under- 
stand all interactions in a more fundamental  way. 
Any valid formulation must cancel anomalies in 
gauged currents. For the surface mode picture to 
work for the standard model, baryon number non- 
conservation through instantons [9] should arise 
from tunnelling through the fifth dimension. 

We now discuss a toy model with mirror 
fermions. Consider two species ¢1 and ¢2 in the 
surface mode picture. Flip appropriate signs in 
the Hamiltonian so that  they have opposite chi- 
rality on a given wall. Since we want to eventually 
couple only one handed neutrinos to the vector 
bosons, consider gauging ¢1 but not ¢2. We can 
now generate masses as in the standard model by 
coupling ¢1 and ¢~ through a Higgs field. 

The new feature is that  now the coupling to the 
Higgs can depend on the extra coordinate xs. In 
particular, let it be small on one wall and large on 
the other. The fermions are then light on one wall 
and heavy on the other. This model is equivalent 
to the picture in Golterman, Jansen, Petcher and 
Vink [10], where the gauge fields are turned off 
in the middle of the slab, and heavy fermions ap- 
pear bound to this discontinuity. The resulting 
model has a light chiral fermion and a heavy mir- 
ror fermion on the opposite wall. As in other 
mirror fermion models [11], triviality arguments 
suggest that  the heavy particle cannot become 
much heavier than the vector mesons, i.e. the W. 

A speculative interpretation would be to call 
the light fermion a lepton and the heavy fermion 
an antibaryon. Then one would have baryon de- 
cay occurring through tunnelling in the fifth di- 
mension, while B - L is still naturally conserved. 
Any simple extension of this idea to a realistic 
model should unify leptons and baryons. Perhaps 
one can use SO(10) [12]. 

Now we turn to a technical discussion of the 
general domain wall solution. Consider one par- 
ticle states for the Hamiltonian of Eq. (1) 

1¢) = Z ( ¢ + ( j ) a ~  + ¢_(j)bJ)]0).  (5) 
J 

In the gap with ]E I < ]2Kr - M], we look for 
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Figure 5. The translation eigenvalues at zero en- 
ergy as a function of the hopping parameter. Note 
the crossing at the critical hopping K = 1. Here 
r = .25 and M = .5. 
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exponential solutions 

¢( j )  ~ M ¢(0). (6) 

Given an energy E, there are four possible values 
for )~ satisfying 

E 2 = -K2(X - l/A) 2 + ( M  - g r ( A  + l/A)) 2 (7) 

For any solution X, 1/A also is. Thus two roots 
exponentially decrease, and two increase. If we 
specialize to E = 0 the equations simplify 

- i K ( A  - 1/A)¢+ = ( i  - 2Kr(A + 1/X))¢_ 
(8)  

i g ( A  - 1/A)¢_ = (M - 2gr(A + 1/A))¢+ 

This immediately implies that ¢_ = +i¢+.  
Fig. 5 shows the behaviour of the four eigen- 

values as a function of the hopping parameter 
K. A crucial eigenvalue crossing occurs at K = 
K,~i,. For ]K] > ]M], the two exponentially de- 
creasing solutions have the same phase relation 
¢_ = - i ¢ + ,  while the two increasing solutions 
have ¢_ = i¢+. When ]g[ < IM[ the solutions 
pair oppositely; for a given phase relation there 
is both an increasing and a decreasing solution. 

At a wall separating subcritical and supercriti- 
cal hopping, one can match a linear combination 
of the two supercritical solutions onto the sub- 
critical one with the same phase between ¢_ and 
¢+. With the appropriate choice for this phase, 
the resulting solution will be normalizable. 

For the case of an open wall, consider a semi- 
infinite box with supercritical K for j _> 1 and K 
vanishing for j _< 0. The zero mode solution for 
positive j is then ¢_ = - i ¢ +  and 

¢ + ( j )  ~ - (9)  

where X1 and X2 represent the two decreasing 
eigenvalues. This combination automatically sat- 
isfies the boundary condition of vanishing at j = 
0. In a finite box an exponentially suppressed 
mixing of the surface modes will generally give 
the states a small nonvanishing energy. 
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